o
o
—
o
|
=

AUTOMATIC ESTIMATES OF COMPUTATIONAL ERRORS

By G. J. Moshos and L. R. Turner)
AW Sh TrIK S @©
ABSTRACT

A new technique has been designed to aid the programmer in accounting/*q~

for computational errors, that is, rounding off:'dnd truneation-:errors

in computational programs. This scheme is one in which signed errors

based on higher accuracy calculations rather than error bounds are calcu-

lated. The discussion includes a formulation of techniques for obtaining

realistic error estimates for a wide range of computational problems and
‘methods for reporting these errors to the programmer in an analysis of

error. A series of test programs has been run in this arithmetic mode to
obtain initial experience. This experience is reported, as well as a

curious effect when the problem has more than one solution.

(ACCESSION NUM R) \
(TH
\/g -
(PAGES) % |
(CODE)

- ’ 2
R A S /(e (p [0,
(INASA
CR OR TMX OR AD NUMBER}
(CATEGORY)

MACILITY FORM oz

E-2199

L)

Prepared for IEEE
Meeting, Chicago, Ill.,
Oct. 28-30, 1963

AUTOMATIC ESTIMATES OF COMPUTATIONAL ERRORS w

By G. J. Moshos* and L. R. Turner¥
SUMMARY
A new technique has been designed to account for computational
errors, that is, rounding off and truncation errors in computational

programs. Each number of the system is represented by two floating-point

numbers, one representing the nominal precision result, and the other

representing the signed accumulated error based on higher accuracy calcu-
lations. The discussion includes a formulation of techniques for obtain-
ing realistic error estimates for a wide range of computational problems
or reporting these errors to the programmer to aid in an
analysis of error. TFinally, the experience achieved by using this arith-
metic in several test problems, which were selected to cover a variety of
difficulties, is reported.

INTRODUCTION

The support of research programs of a scientific center often in-
volves fresh computational problems for which the nature of the solution,

or a guaranteed method of achieving it, is not known. Assuming that such

a problem can be formulated and a possible computational procedure devised,

if the answers are to be meaningfully interpreted, the computational pro-
gram must then be assessed with an analysis of the various errors intro-
duced by the program and data. This type of analysis is especially diffi-

cult to perform, since it usually involves a greater complexity of analysi

*NASA Lewis Research Center, Cleveland, Chio.

S

-2 -

than the program itself. Moreover, this analysis is further complicated
by the use of floating-point arithmetic. As a consequence of the com-
plexity of error analysis of problems in floating-point arithmetic, some
automatic technique is needed to aid the analysis of such problems. The
automatic techniques that have been proposed in the literature are based
on either performing the calculations exclusively with significant digits
or calculating an error bound along with the nominal precision result.
Since the estimate of error in each of these arithmetics is arrived at by
accuracy reducing calculations, the estimate of error can be expected to
be pessimistic.

The purpose of this paper is to discuss a new technique that is de-
signed to account for computational errors, that is, rounding-off and
truncation errors. This technique is one in which a signed error rather
than an error bound is calculated. In order to achieve realistic error
estimates, the error estimates are based on higher accuracy calculations.
Methods are presented for obtaining estimates of errors in arithmetic
operations, in nonalgebraic function evaluation, and in iterative processes.

Because there are two answers at each point in the computations,
branching on value may become indecisive. This indecisiveness is a
troublesome feature in the management of a problem, but it may also be an
invaluable aid in debugging. This use of error arithmetic and others are
discussed.

Finally, the experience that was gained by running several problems
in this arithmetic mode, including a curious effect when the problem had

more than one solution, is discussed.

ARITHMETIC WITH SIGNED ERRCR

A scheme that is proposed at the Lewis Research Center is one in
which signed errors, rather than error bounds, are calculated. ZEach
number N of the system is represented by two floating-point numbers
(n, En). During the arithmetic operations, n represents a nominal pre-
cision result, while E, represents the accumulated error which consists
of the generated error of the operation and error propagated from previous
calculations. With (a, Eg) and (b, Ep) assumed as the two operands and
(c, E,) the result of an arithmetic operation, the computed error estimate
E. is then calculated by the formulas in Table I to the precision per-
mitted by the machine representation of E,. (The bracketed quantities in
+, -, and X are the generated errors.)

TABLE I. - FORMULAS FOR COMPUTING ESTIMATE OF TOTAL ERRCR

Operation,’ Computed error estimate,
op E.
+ [(a +b) ~cl +E; +Ey
- [(a-b)-c]+Ea-Eb
X [ab"c]"'aE'b"'bEa"'EaE'b
. (a + Eg) - c(b + Ey)
' [+ Bp)

Each step of this arithmetic is equivalent to that of performing the
computations simultaneocusly witH a nominal precision arithmetic and an
extended precision arithmetic and computing the estimate of error by
taking the difference of the two values. The formulas in Table I repre-

sent accurate estimates of the error in the nominal precision result

-4 =

c =a op b. Attention is called to the fact that in multiplication E B,
is insignificant if the errors are small, but will not be negligible if
the errors are large. In division, a + E; - c(b + Eb), where c¢ 1s the
nominal precision result, is an accurate remainder, and b + E, can be
used effectively as the sum of b and its error reduced to the representa-~
tion of the nomingl precision result.

A typical result of a simple arithmetic operation is shown by the
decimal addition 1/7 + 8/9, where 1/7 = (0.142857, 0.142857x10-6) and
8/9 = (0.888889, - 0.111111x10-6). Their sum, 65/63, has the representa-
tion 65/63 = (1.38175, - 0.396825x107°). The error -0.396825x10-5 is
made up of two parts - the generated error [(a + D) - c] = 0.888889
+ 0.142857 - 1.03175 = -0.4x10~° and the propagated error E, + E, =
0.142857x10-6 - 0.111111x10-6 = 0.31746x10~7. The total computed error
rounded to six significant decimal digits is -0.396825x10-°.

A second example, the product of 13/9 and 5/7 has as its input the
number pairs (1.44444, + 0.444444x10-5) and (0.714286, - 0.285714x1076),
which yield the pair (1.03174, 0.603174x10'5), whether the product EgE,
is included or not, and whether the low order part of the product is
rounded or not. The product EgE; 1s generally not important if the
errors are small, but because errors can and do become large, an accurate
error trace requires the consideration of this term through some artifice.

The subtraction 11/12 - lO/ll (without detail) leads to the pair
(O.757600x10'2, - O.242424X10'6), which illustrates that digit positions
of an error estimate may overlasp the digit positions of the nominal pre-

cision result. It is similarly possible for the ranges of digit positions

-5 -

to be disjoint. When the errors are small, ¢ + E, 1is very nearly equal
to the result that would have been obtained by the systematic use of ex-
tended precision.

ESTIMATE OF ERROR IN THE EVALUATION OF

NONALGEBRAIC FUNCTIONS

Throughout this discussion we have in mind that two results are
available in the computer after each calculation. One result is arrived
at through nominal precision arithmetic, and the other is & more accurate

standard for gaging the nominal precision result. If (a, E is the argu-

a)
ment in the evaluation of the nonalgebraic function f(x), a represents
the nominal precision number and (a + E
culated standard. Given some procedure ?(x) for approximating the func-
tion f(x) in nominal precision arithmetic, the standard for comparison
must be arrived at through higher accuracy calculations, which must account
for the generated error in the approximate procedure f(x), as well as the
error propageted from previous calculations. Consequently, the error Ee
may be equivalently defined as the sum of the propagated and genersted
errors, which may be expressed as f(a + Eg) - f£(a) and f(a) - f£(a), re-
spectively, which are the same as Ep = f(a + Ey) - f(a).

The value of the function employed in nominal precision arithmetic
is customarily obtained by some approximation that represents a good com-
promise between accuracy and computer speed. For example, such an approxi-
mation might be a Tchebycheff polynomial approximation. If E, 1is large,

this procedure could be used to evaluate f(a + Ea) to obtain the error

Ep. However, if E, 1is small, this approximation would fall short of

-6 -

the goal, since truncation error would represent an important contribution
to the total error and would not be reflected by the algorithm. A safe
procedure for calculating fla + Ea) is to have available a high-accuracy
routine based on an approximation such as a Taylor series or continued
fractions that can achieve any necessary degree of accuracy.

ESTIMATE OF ERROR IN ITERATIVE PROCESSES

The error in an iterative process is defined as the difference be-~
tween the asymptotic value of the answer and the machine value after the
kth iteration, that is, x_ - §k. Ordinarily, the error of the iterative
process (as well as the rate of convergence) during computations is meas-
ured by a value computed by taking the difference of the ﬁachine values
of two successive iterations, that is, §%+l - Ek. When the error of the
iterative process x '-ik is expanded by (X, - Xp41) + (X4 - §k+l)

+ (§%+l - §k), it is noted that the measured error of an iterative process
is further vitiated by the iterative truncation error (x, - xk+l)' Conse-
quently, in order to estimate realistically both the iterative truncation
error and the rounding error, it 1s necessary to realize an accurate value
of the asymptotic value of the answer with higher precision arithmetic.
This may be achieved by evaluating the iterative process with error arith-
metic, as discussed in the previous two sections.

The more efficient use of the computer may be realized in some large
iterative processes by understanding when the error trace needs to be
initiated. For the class of iterative processes of finite iterations,
such as the method of conjugate gradient or Hestene's method of biorthogo-

nalization, an estimate of error can be obtained only if the error trace

is started at the start of the iteration. In this respect, then, these
iterative processes must be treated as direct or explicit evaluations.

For iterative processes that yield the answef only in the limit, the
error trace need not be started at the start of the process. Statlonary
processes, such as the methods of successive overrelaxation, are perhaps
the easiest to error trace, since the error trace may be started at any
time in the process. Nevertheless, after the error trace is started, the
process must be permitted to continue until both the nominal precision
result and the estimate of error have converged. Asymptotically stationary
processes, such as the Tchebycheff semi-iterative methods, which are asymp-
totically similar to the successive overrelaxation methods, may be treated
like stationary processes.

A special problem arises when the measured error of the process is
used to establish a strategy as, for example, in the use of Kulsrud's
algorithm for determining the optimal overrelaxation parameter. In this
process, 1f convergence is delayed because of rounding-off errors, the
Kulrud's algorithm indicates a larger than optimal relaxation parameter
to be used with the error trace. The correct procedure in this case would
be either to deactivate the parsmeter calculation or to base it only on
the higher precision results.

BRANCHING

Branching in error arithmetic has an added complexity because the
branchings, such as branching on value, can be based on either of two
precisions. A potential source of difficulty in a program occurs when a
branch is undecidable; that is, if x calls for one choice and x + Ey

calls for the other choice. The effect of a choice of & particular

-8 -

direction of branching is difficult to predict. If the two options execute
essentlally the same data storage and control operations and, therefore,
lead to the same terminal program step, the dichotomy is probably unimpor-
tant and is, therefore, called immaterial; otherwise it is called a mate-
rial dichotomy.

The execution of & program thet contains only immaterial dichotomies
should lead to & good estimate of errors, if adequate account is taken of
iterative and functional truncation errors.

The only assured method of obtaining good error estimates when
branching is doubtful is to execute the problem twice, the first time
besing all branching on the nominal precision results, and the second time
basing the branching on the sum of the nominsl precision results and the
estimate of error.

A report of the occurrence of dichotomies during these two executions
of the problem could be of considerable aid 1n the debugging of a doubtful
problem.

USES OF ERROR ARITHMETIC

The current practice in most computer installations is to compile a
program to run in single precision arithmetic. After the program has been
run in this mode and the solution is found to be in doubt, the program is
run in a double precision arithmetic. The programmer, however, is still
left without an estimate of error. The primary motivation for the arith-
metic proposed in this paper is to give the programmer an estimate of
error to aid in an error analysis. Moreover, since the error is calcu-

lated on a higher precision basis, the number x + Ey represents a higher

accuracy number. The error arithmetic then gives the programmer a much
more informative result than that obtainable from double precision calcu-
lations.

The first task of a programmer trying to improve a solution that is
unsatisfactory is to find where in the program a detailed analysis would
be profitable. Since the error arithmetic can cope with both large and
small errors, it can be used to trace the errors on a dynamic basis and
locate code sequences for further study.

' Improved performance in the solution of large problems can usually
be accomplished by (1) local improvement, (2) extended precision calcula-
tions, and (3) complete reprogramming.

Local improvements can be made only up to the minimum.unavoidable
error that is permitted by the precision of the arithmetic being used.
Variations in algorithms mey be studied with error arithmetic with an aim
at achieving minimum error. Moreover, it is entirely feasible that critical
steps in the arithmetic be evaluated by several algorithms using error
grithmetic, and that the result for further calculaticn be selected on a
dynamic basis to achieve the smallest error.

If a higher precision is needed than is permitted by the least count
of the machine representation, error arithmetic can again be utilized to
determine to what extent this would be helpful.

When both of these techniques fail, reprogramming may provide an
answer. In this respect, a combination of algorithms may be a feasible
approach; that is, one algorithm to achieve a maximum rate of convergence

and another to achieve a minimum error.

- 10 -

A potential source of difficulty in error tracing a computational
program occurs when a choice in branching is undecidable. One option is
to follow the branching determined by the nominal precision arithmetic
with an aim at reporting the accrued error in each quantity that was origi-
nally specified for output and reporting instances in which the choice in
branching is altered when the higher accuracy calculations are considered.

If branching dichotomy develops when the program i1s traced with this
option, it should he traced again following the branchings determined by
the higher precision results. If the paths determined by these two op-
tions do not terminate to the same program statement, it is reasonable to
assume that the program is in trouble, and that the calculations are sen-
sitive to precision. For example, the higher precision results may lead
to an alarm, while the nominal precision results lead to an answer that
appears reasonable. If the paths determined by these two options do ter-
minate to the same program statement, the answers produced by the two op-
tions may be compared to aid the programmer in ascertaining if the branch
was material or immaterial. If the two results are appreciably different,
the branch may again be classified as material, and the program can again
be ascertained to be in trouble. Unfortunately, if the two results are
about the same, the branch cannot be definitely classified (although the
probability is that it is immaterial). By programming a sufficient number
of intermediate reports, however, the programmer can localize the trouble
and through further analysis classify the branch.

A point should be made at this time regarding the error arithmetics

that have been proposed in the literature. These arithmetics, except

- 11 -

possibly for range arithmetic, do not permit a simple procedure to trace
the alternate paths when a branch becomes undecidable. In the case of
range arithmetic, while the procedure can be formulated, the report in any
precision sensitive problem can be expected to be pessimistic, and this
debugging ald can no longer be applied.

STYLES OF REPORTING ERRORS

If the error arithmetic is to aid the programmer in the analysis of
error, the output report must be such as to facilitate this analysis. The
generated error, in general, will tend to be small; however, because small
errors can be magnified by propagation, the styles of reporting should also
permit the study of large errors. Consequently, the programmer would want
to study the errors separately from the higher precision results in order
to trace the propagation of errors in the machine representation of the
results.

Several styles could then be used for the report. Since each style
must be easily identified, however, the report must also contain the iden-
tification of the style. Experience with Lewis Research Center error
arithmetic has indicated that four different styles would be useful.

Since the errors in any local algorithm would, in general, be small,
the natural unit for measuring error is with respect to the minimum un-
avoidable error. In this way, a programmer may relate the algorithm to
the best obtainable with the working precision of the machine. The first
style of error reporting is, therefore, in terms of the least count of the
principal part of the number.

When the numbers being reported represent a vector, some common basis

for relating the individual errors to the vector is needed. Some vector

- 12 -

norm could properly be used for this comparison. As an example, the
vector

Yo, By

Yoo EY&
represents the solution and the first derivative of the differential
equation Y" + Y =0, Y(0) =1, and Y'(0) = O. In this example, when
the value of Y, is near 1, the value of Yﬁ is near zero. Reporting
the errors with respect to the least count of the principal part of the
number could be misleading. In any case, a much more informative compari-
son;could be made by reporting the errors in terms of the least count of

the machine representation of 1, which is the Euclidean norm for this

vector. If the vector

EYn

is to be reported for this differential equation, then 1.0 again would
suffice, since it represents the Gershgorin norm for this vector. Another
style of reporting the error is in terms of the least count relative to
some calculated or prespecifitd number.

If the internal representation and the report representation of the
number were on the same number base, the previous two reports would suffice
for reporting the errors. However, if the two representations were differ-

ent, for example, binary and decimal, respectively, some side calculation

- 13 -

would be necessary to compare the error with the number on an absolute
scale. Consequently, another useful style of reporting is a report of the
signed error on an absolute scale.

Finally, the error associated with a number could be of no use to the
error analysis, but what would be desired is a report of only the nominal
precision number with no error report. Not only would this save machine
time in not publishing an error report when none is necessary, but it
would also ald the programmer in minimizing the reports that are to be
studied.

EXPERIENCE WITH ERROR ARITHMETIC

The purpose of the first series of experiments run with this arith-
metic was to obtain some initial experience with the ability of the arith-
metic to predict error estimates. Since the objective was to test the
arithmetic, the examples were chosen so as to exclude truncation errors
from the demonstration. In order to accomplish this, the standard for
comparison was based only on the rational operations that were employed.
Thls was obtained either by a formal solution, or a program that was run
with a higher precision arithmetic. Specific iterative procedures were
chosen so that the starting value could be modified and so that it could
be observed 1if the error estimate was properly adjusted. The programs,
problems, and modifications used to obtain this initial experience were
the following:

Program: Matrix inversion by biorthogonalization
Problems: (1) Well conditioned 4 by 4 matrix consisting of integer

elements

(2) Hilbert matrices of order 3, 4, and 5

- 14 -

Modifications: The results of the first iteration, that is, (r, E.)
were adjusted as follows

(1) Ummodified

(3)x:=r+Er,Ex:=O
and then used as starting values (X, Ex) for the second iteration.
Program: Integration of second order differential equations by an implicit

three-point procedure

2
Provlems: (1) &L +y =0, y(0) =1, and y'(0) = 0

&

0<x<7 for step sizes h =1, 1/2, 1/4, 1/8,
1/16, 1/32, 1/64
(2) Bessel's equation of index zero
dzy

—= +
ax2

b
Rl&

+y =0

¥(0) =1, y'(0) = 0, and y"(0) = -1/2
0<x<7 for step sizes h =1, 1/2, 1/4, 1/8,
1/16, 1/32, 1/64
Modifications: The results of the first iteration, that is, (r, E.),
were adjusted as follows

(1) Unmodified

(2) x :=r, E_ :=0

X

(3) x :

r + Er, EX,;= 0
and then used as starting values (x, Ey) for the second iteration.

In all these cases the error arithmetic calculated an answer and gave a

prediction of error. Moreover, in most cases, the prediction of error

- 15 -

was excellent. It is interesting to note that in these examples an esti-
mate of error was obtailned independently of whether or not an error was
assumed in the starting value.

The next series of experiments was run to demonstrate some special
problems with error arithmetic.

In iterative procedures, since the purpose of an error trace is to
obtain an estimate of error, the process must be allowed to continue until
both x and E;, have converged. This was demonstrated by using Newton's
procedure to obtain the root of f(x) = X0 - 3x% + 3x - 1 (triple root at
x = 1) with a starting value of Xg = 0. The process converged and gave
a good estimate of error, but it required a few extra iterations beyond
those required for only the principal part to converge. Contrasted to
this procedure, by using a modification of Newton's procedure, both con-
vergence and an estimate of error were obtained in one iteration. The
modification that was used for this demonstration was to replace f(x) by
the test function £(x)/f'(x) in Newton's iterative method, which modifies
the algorithms such that

= - £/f!
k+1 K (f')z _ f/f“

This improved convergence stemmed from the fact that Newton's process acts
as a Tirst order process in the vicinity of a multiple root, while the
modified Newton's process is a second order process.

Convergence, however, cannot be used as the only basis for obtaining
an estimate of error in iterative processes. Conflicts can occur in which
the principal part and the error converge to numerically unrelated values.

This was demonstrated in using the modified Newton process to obtain the

- 16 -

solution to the equation 3x% - x = 0. The following plot shows the test
function (i.e., f/f') to which Newton process is applied to obtain the

modified algorithm:

£/

ya Ry x 1/3

The reglon of influence of the roots ry = -1/4/3, ry =0, and

rg=1/+/3 is - <ry<-1/3, -1/3< ry < 1/3, eand 1/3<r, < »,

2
respectively. That is, when a starting value is in a particular region
of'influence, the process will converge to its associated root. By
putting the nominal precision value of the starting value in one region
of influence and the nominal precision value plus the error in another
region of influence, the algorithm converges to two different roots. In
this example, by putting the starting value at x = 1/3' and
x + Ex = l/3+, the process converged to 0, while the error convérged to
0.577.

This same phenomena was further demonstrated by using Newton's
algorithm to solve for the roots of 3x3 - x = 0. In this case, because
of the distributions of the regions of influence, the process could be

made to converge to the whole gamut of possibilities with only slight

modifications of the Yow order digits of the starting value. That is,

- 17 -

by using starting values that differ only in the low order digits, this

process could be made to converge to -1/3, 0, or 1/3, and to give an estimate

of error in each case, and, also, to converge to any combination of two

different roots, that is, -1/3 and 0, O aﬁd 1/3, and -1/3 and 1/3.
CONCLUSION

The error arithmetic presented in this paper is based on higher ac-
curacy calculations and one in which signed errors rather than error
bounds are calculated. The method for calculating the errors resulting
from a rational calculation has been experimentally verified to produce
a realistic estimate of errors. This success has encouraged the considera-
tion of automatically tracing errors resulting from truncation errors.
Specifically, a realistic estimate of error can be obtained in the evalua~-
tion of a nonalgebraic function if a high accuracy routine is available
for evaluating the higher accuracy argument and comparing this to that
obtained through the nominal precision arithmetic. A major problem may
exist when calculations by two precisions affect decisions in branching
on value. In many cases, this will not cause difficulty, but 1t may in
turn be a vital clue to the source of difficulty in an attempted solution
of a problem.

Finelly, iterative processes were studied with this arithmetic in
order to ascertain whether a realistic estimate of error accounting for
both rounding and iterative truncation errors could be obtained. The
experience has indicated that in most cases this arithmetic could be ef-
fectively used as a debugging aid in iterative processes. Cases may arise,
however, in which the nomingl precision result and the higher precision

result converge to two unrelated answers.

